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Exercice 1

On considère la suite (un) définie par    u0 = a   ;   a 
[image: image1.wmf]Î

 IR  et   pour tout n 
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 IN  , un+1 = 2un + 3

1°)
On suppose dans cette question   a = 2. Calculer  u1, u2, u3, u4.


Démontrer par récurrence que un 
[image: image3.wmf]>

 0  pour tout n 
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 IN .


Démontrer que la suite (un) est une suite croissante.

2°)
On suppose a = -3 . Calculer   u1, u2, u3, u4. Que peut-on dire de la suite (un) ? (Justifier)

3°)
On suppose a = -5 . Calculer   u1, u2, u3, u4. Démontrer que la suite (un) est décroissante

Exercice 2
1. a)  (un) est est une suite arithmétique telle que u0 = 5 et u10 = 65. Calculer u20.                                                          b) (un) est est une suite arithmétique telle que u4 = 12 et u8 = 4. Calculer u20.
2. Parmi les suites suivantes, quelles sont celles qui sont des suites arithmétiques ?                                             a) un = – 2n + 3 ;     b) un = n3 – 3n2 + 2 ;     c) un = (n + 1)2 – n2 ;   d) un = 5 + 2n ;                        e) un+1 = un + n – 1 et u0 = 3.

3. (un) est la suite arithmétique de premier terme u0 = 5.                                                                            On sait que u0 + u1 + u2 + ... + u10 = 253. Calculer u20.

Exercice 3
On considère la fonction f définie sur 
[image: image5.wmf][
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1. a)  Construire dans un repère orthonormé 
[image: image6.wmf](
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 la courbe 
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 de f    .                                                             b)  Résoudre l’équation 
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2. Soit la suite 
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*

1

() définie par :  ; a

53

1

nn

n

n

n

ua

u

u

u

u

Î+

+

=

ì

ï

Î

-

í

=

ï

+

î

¥

¡

.                                                                       a)  déterminer les réels a pour que la suite 
[image: image10.wmf]()
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soit constante.                                                                   b)  On pose que a = 5 ; construire dans le même repère les quatre premiers termes de la suite 
[image: image11.wmf]()
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. Conjecturer. 
3. dans la suite on pose que  
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.                                                                                                                 a)  Placer les trois premier termes puis conjecturer.                                                                                         b)  Montrer par récurrence que pour tout entier naturel n ; 
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.                                                  b)  Montrer que la suite 
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est croissante. 
4. on considère la suite 
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nn

v

Î

¥

, par : 
[image: image16.wmf]3

1

n

n

n

u

v

u

-

=

-

.                                                                                       a)  Montrer que la suite 
[image: image17.wmf]()
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est géométrique qu’on précisera la raison et le premier terme.                          b)  Exprimer 
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puis 
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en fonction de n.                                                                                                      c)  Déterminer 
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.                                                                                                   d)  Calculer 
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Exercice 4
Soit (un) la suite définie par : 
[image: image22.wmf]0
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1. Calculer u1, u2 et u3. S'agit-il d'une suite arithmétique ou géométrique ?

2. Montrer par récurrence que pout tout n
[image: image23.wmf]Î
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, un≠1.

3. Soit (vn) la suite définie par : 
[image: image24.wmf]2
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.                                                                                                      a)  Calculer v0, v1, v2, v3.                                                                                                                                                b)  Montrer que la suite (vn) est une suite géométrique.                                                                                                     c)  Exprimer vn en fonction de n, en déduire une expression de un en fonction de n.                                             d)  La suite (un) a-t-elle une limite ? Si oui, laquelle ?

Exercice 5
Soit la suit (U) définie sur IN par U0 = 0 et pour tout n(IN      ;          
[image: image25.wmf]1
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1. Représenter graphiquement les cinq premiers termes de la suite (U)  

2. On définie sur IN la suite 
[image: image26.wmf]()
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 par : Vn = Un + (
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)n   ,  calculer V0 , V1  et V2 en déduire que la suite Vn    est constante , déterminer alors Un  en fonction de n

3. On considère la suite 
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définie par : 
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 .                                                             a) peut-on déterminer 
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 pour que la suite 
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soit géométrique. Préciser le premier terme et la raison de cette suite. Exprimer 
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en fonction de n .                                                                           c) Calculer les sommes suivants : 
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Exercice 6
Soit la suite Un définie par uo = 1 ; 
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 pour tout n entier.

1. Calculer les trois premiers termes de la suite (Un).

2. Construire la représentation graphique des quatre premiers terme de la suite  

3. La suite U est elle arithmétique est elle géométrique.

4. La suite V est définie par :
[image: image36.wmf]nn
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 .  Déterminer le nombre réel a pour que la suite Vn soit géométrique.

5.  Déterminer Vn en fonction de n, puis un en fonction de n.

6. Calculer 
[image: image37.wmf]0

in

i

i

u

=

=

å

 en fonction de n.
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